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We discuss the diffraction of internal waves by a semi-infinite vertical barrier in 
a uniformly rotating, stably stratified fluid of constant depth and Brunt- 
Vaisala frequency. N ,  For the frequency passband f < u < N ,  where f and u are 
respectively the inertial and wave frequencies, the presence of rotation gives rise 
to internal Kelvin waves which propagate without attenuation along the barrier. 
For the passband N < CT < f, however, the barrier generates waves which propa- 
gate without attenuation away from the barrier and which have amplitudes that 
fall off exponentially in the direction along the barrier. 

1. Introduction 
The diffraction of long gravity waves by a semi-infinite vertical barrier in 

a uniformly rotating system has been considered by Crease (1956) for the case of 
normal incidence and later by Chambers (1964), for arbitrary incidence. One of 
the remarkable results of their work was that the presence of rotation gives rise 
to a Kelvin wave which propagates without attenuation into the region behind 
the barrier. The direction of propagation of this wave is along the barrier and its 
amplitude falls off exponentially in the direction normal to the barrier. Further, 
for certain ranges of the wave frequency and incident angle, the amplitude a t  the 
barrier exceeds that of the incident wave field. 

In  this paper we consider an analogous diffraction problem for internal waves 
in a uniformly rotating, stably stratified fluid of constant depth and Brnnt- 
Vaisala frequency. We show that the boundary-value problem for the horizontal 
spatial dependence of the nth mode of the diffracted wave field, $n, is formally 
equivalent to that derived by Crease and Chambers for the spatial dependence 
of the diffracted long wave, 5. However, because of the existence of two frequency 
passbands for internal waves, the solutions for $n and 6 are not identical in form. 
For the case f < CT < N ,  where f, CT and N are respectively the inertial, wave and 
Brunt-Vaisala frequencies, the solutions are identical in form. But for the case 
N < CT < f, no internal Kelvin wave exists immediately behind the barrier; 
instead there arises a wave which travels normal to the barrier without attenua- 
tion and which has an amplitude that falls off exponentially in the direction along 
the barrier. 
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2. Formulation of boundary-value problem 
We consider the time-dependent motion of a uniformly rotating, inviscid and 

incompressible fluid in the domain R: -MI < x, y < 00, -h  < z < 0 exterior to 
the semi-infinite strip y = 0, x < 0. Here x, y, z form a right-handed Cartesian 
system with z as the vertical co-ordinate. The mean sea level is at  z = 0 and the 
ocean bottom a t  z = - h, a constant. The linearized equations for the conserva- 
tion of momentum, mass and volume are 

i U t  -fv + P X I P O  = 0, 

vt +fU+P,lPO = 0, 

W t  + PzlPo + P9IPo = 0, 

Pt + POZW = 0, 
ux+v,+wz = 0. 

Here u, v, w are the perturbation velocity components in the x, y, z directions 
respectively; p is the perturbed pressure; po(z) and p are the mean (stable) and 
perturbed density fields respectively; f is the inertial frequency and g is the 
acceleration of gravity. Applying the Boussinesq approximation (see Phillips 
1966, 9 2.4)) po and poz are now treated as constants. On the boundaries of R we 
impose the conditions 

(2.4) 1 w = O  on z = O  and z = - h ,  

v = O  on y = O  ( x < O ) .  

The boundary condition a t  z = 0 implies that there is no vertical motion a t  the 
sea surface; i.e. coupling between surface and internal waves is ignored in this 
analysis. 

From (2.1) to (2.3) it follows that the vertical velocity component satisfies the 
equation 

where AH = af + a;, A = AH + a: and N 2  = - gpoz/p is the Brunt-Vaisala fre- 
quency, assumed to be constant. The horizontal velocity components are related 
to the vertical velocity component by the equations 

AWtt + f %u,, + N2AH w = 0, (2.5) 

where 

Upon assuming a periodic time dependence 

w(z,  y, z, t )  = W(x,  y, z )  exp ( -id) (G > 0), (2.7) 

and defining m2 = ( N 2 -  gz))I(G2 - f 2), (2.8) 

equation (2.5) becomes u2AH W -W, = 0. (2.9) 

W = O  on x = O  and z = - h ,  (2.10 a)  

From (2.4), (2.6) and (2.7) we find that the boundary conditions for W are 

W,-iyW,= 0 on y = 0 (z < 0), 
where y = f/G. 

(2.10 b)  
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Let W, be a wave approaching the barrier at an angle 8( 181 < n) to the x axis 
(see figure 1).  We assume W, has the form 

m 

W, = s,exp [ - ik,(z cos 8 + y sin 6 ) ]  sin (nnzih), (2.11) 
n= 1 

where ki = (nn/wh)2 > 0; clearly W,, being a superposition of normal modes, 
satisfies (2.9) and ( 2 . 1 0 ~ ) .  The coefficients s,, which are assumed known, deter- 
mine the shape of the incident wave. The condition k: > 0 together with (2.8) 
implies that two frequency passbands are physically realizable: f < u < N and 

FIGURE 1. Plan view of wave approaching semi-infinite barrier y = 0, z < 0. 

N c u < f. Since the barrier gives rise to a diffracted wave field which must also 
satisfy (2.10a), we take the total wave field W to have the form 

m 

W = s,$z(x, y)sin(nnz/h), 
n=l 

(2.12) 

where $: = exp [ - ikn(x cos 8 + y sin O)] + $n(x, y). Here ?+kn(x, y) represents the 
horizontal spatial dependence of the nth mode of the diffracted wave field. The 
substitution of (2.12) into (2.9) and (2 .10b)  gives, upon dropping the subscript n, 

(AH + k2)  $ = 0, ( 2 . 1 3 ~ )  

(2.13b) 

where a = k( i  sin 8 + y cos 8). To determine a unique solution to (2.13 a, b )  we also 
specify that (i) $ satisfies the Somrnerfeld radiation condition, (ii) $ is bounded 
everywhere in R and $x(O + , 0) and 11.,(0 + , 0) are integrable and (iii) @ and 
+v - iy$x are continuous across y = 0 for x > 0 and all z respectively. Condition 
(iii), which ensures that w and v are continuous across y = 0 for x > 0 and all x 
respectively, also ensures that u is continuous across y = 0 for x > 0. 

From (2.8) and (2.11) we see that the wave eigenmodes satisfy the dispersion 

K2 = ( U 2 - f 2 ) / ( N 2 - U 2 ) ,  (2.14) relation 

$&, 0) - iy$Jx,  0) = a exp ( - ikx cos 6) (x < O),  
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where K = kh/nn. Equation (2.14) implies that (r = cr(k), i.e. that 5 depends 
upon only the magnitude of the horizontal wave-number vector (kl, k z ) .  Thus, 
the wave group velocity components cgi are given by 

cgi = &/aki = (k,/k)dcr/dk. 

Now, the wave phase velocity components ci are defined as 

ci = kicr/k2, 

and hence, from (2.14), the scalar product of the phase and group velocities is 

(2.15) 

This implies that whereas the phase and group velocities are in the same direction 
when f < cr < N ,  the group velocity has the opposite sign to  that of the phase 
velocity when N < 5 < f.f Thus, in order that the vector in figure 1 represents 
the direction of incoming wave energy, we take k > 0 for f < cr < N and k < 0 for 
N < cr < f in (2.11)-(2.13a,b). Equation (2.15) must also be taken into con- 
sideration when applying the Sommerfeld radiation condition, namely, that the 
diffracted wave field @ contains outward propagating energy only. 

We note here that equations (2.13 a, b) with k > 0 also govern the behaviour 
of the diffracted wave due to a long gravity wave incident upon a semi-infinite 
vertical barrier in a rotating system (see Crease 1956, Chambers 1964). In that 
case @ represents the spatial dependence of the sea surface elevation and 
k2 = (a2 - f 2)/gh > 0 is the wave-number of a freely propagating long wave. 
Further, for long waves in a rotating fluid it follows that c . c, = gh > 0. Thus the 
two diffraction problems are mathematically equivalent when y < 1 in the sense 
that both can be reduced to the same boundary-value problem (BVP) which in 
turn reduces to  the BVP associated with the cla,ssical Sommerfeld diffraction 
probiein when y = 0 (no rotation). 

3. Integral representation of solution for f < ts < N 
To construct the solution to (2.13 a, b) (with 0 = in), Crease (1  956) first converts 

the BVP into an equivalent integral equation. From the latter he derives a 
Wiener-Hopf integral equation for a function m(x) (see (3.5) below) whose kernel 
consists of the appropriate Green’s function for the BVP. He then uses the 
Wiener-Hopf method to solve this second integral equation for m(x). The substi- 
tution of m(x) into the original integral equation then yields, after some manipula- 
tions, a Fourier integral for the diffracted wave. Crease’s approach i s  unneces- 
sarily complicated, however, since (2.13a, b) can be solved directly by the 
Wiener-Hopf method without first recasting the BVP into an integral equation. 
We briefly outline this alternative approach (see Carrier et al. 1966, 3 8.1) below. 

Crease’s problem (for arbitrary 0) has also been solved by Chambers (1964) who 
used a method previously developed by himself (Chambers 1954). Chambers 
assumes that the diffracted wave is equal to  a linear combination of ‘diffraction 

t We are grateful to a referee for pointing out this fact. 
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functions’, each of which is proportional to a certain complex Fresnel integral. 
The unknown coefficients in this equation are then determined by appropriate 
boundary conditions. While Chambers’ approach is fairly elegant, it does not 
appear to be any simpler than the method we now give. 

Upon applying t o  (2.13 a )  the Fourier transform with respect to x as defined by 
m 

F ( A ,  y) = 1 ei*zP(x, y) dx, 

we obtain ?$b YV -(P-kZ)P = 0. (3.1) 

--m 
- 

The solution to (3.1) which is bounded as lyl +oo is 

where the branch of (A2 - k2)h is chosen so that arg (A2 - k2)i + 0 as h -+ f co. It 
follows that the radiation condition is satisfied if k is assumed to have a small 

Im R 

FIGURE 2.  The h plane corresponding t o  (3.10) forf < CT < N .  

positive imaginary part, viz. k = k, + i s  (k, > 0, s > 0). Thus we draw the branch 
cuts from h = k k in the h plane as shown in figure 2. The continuity of y?u - iy@x 
across y = 0 implies 

B(h) = (3.3) 

To determine A(h),  and hence B(h), we now introduce two half-known func- 
tions g(x) and m(x) by the equations 

where 
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Transforming (3.4) and using (3.2) (for y < 0) and (3.6) we obtain 
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where the subscript - denotes a minus function, which is analytic in the lower 
half plane (LHP) Imh < scos0 and the subscript + denotes a plus function, 
which is assumed to be analytic in the UHP Imh  > - B. Transforming (3.5) and 
using (3.2) and (3.7) we obtain 

B(h) - A @ )  = rn-(A), (3.9) 

where E- is assumed to be analytic in the LHP Im h < B. Using (3.3) in (3.9) and 
substituting the result for A into (3.8), we obtain the Wiener-Hopf equation 

- ia +m, A - k cos e - - [k2-(1-y2)A2]rn(h) 
2(h2- k2)* 

which can be rewritten in the form 

+--I , (3.10) 

1 [ 2(h - k)3 + (h ,+kcos0)  (A-kcos0) - 

(r2 - 1)  - A,) ia(k + k cos 0)* 

- i a [ ( h + k ) ~ ( h , + k c o s 0 )  +(k+kcosO)+(h+ho)]  (h+k) ig (h)  
(h+ho) + 

where A, = k(1 -y2)-&. 

The left-hand side of (3.10) is analytic for Im h < B cos 0, and the right-hand side 
is analytic for Imh  > - B .  Thus (3.10) holds in the strip - e < Imh < ecos0 
and defines an entire function E(h)  which is analytic in the whole h plane by 
analytic continuation. Since $(O - , 0) is bounded and $z(O + , 0), +,(O + , 0) are 
integrable, itfollowsthatm = O(h-l)as Ihl +cointheLHPandg = O ( P )  (8 > 0) 
as Ihl --too in the UHP respectively. Therefore each side of (3.10) tends to zero 
as Ihl -too in the strip, and, by Liouville’s theorem, E(h)  = 0. Thus, upon 
setting the left-hand side of (3.10) equal to zero, we obtain 

(3.11) 

Taking the inverse Fourier transform of (3.2) in which A and B are now deter- 
mined from (3.3), (3.9) and (3.11), we obtain 

- 2ia(h - k)) (k+ k cos 0)s 
(p- 1)  (,lo+ IC cos e)  ( A  - A,) ( A  - k cos e ) .  %(A) = 

yh - sgn y(A2 - k2)) 
+l.(X,Y) = - exp[-ihz- IyI (h2-k2)3],  

(3.12) 

where b = k(sin 0 - iy cos 0) (k + k cos 0)q( 1 - y2) ( A ,  + k cos 0) and the inversion 
path r lies in the strip - -B  < Imh < B C O S ~ ,  as shown in figure 2. It can be 
verified that (3.12) indeed satisfies (2.13 a )  and the associated boundary condi- 
tions. Further, for 0 = &r, equation (3.12) reduces to Crease’s Fourier integral 
representation of the solution for the diffracted wave. 
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4. Asymptotic solution for f < a < N 
To determine the general nature of the diffracted wave (3.12), we now consider 

the asymptotic form of @ for large kr = k(x2 + y2)J. However, in contrast to 
Crease (1956) who first transforms the solution into complex Fresnel integrals 
before determining the asymptotic behaviour, we apply the method of steepest 
descent directly to (3.12). Letting x = r cos q5, y = r sin q5, where - n < q5 < n, 
and h = kc, equation (3.12) becomes 

where go = A, k-l and the path of integration I’* is as shown in figure 3. We have 
taken B = 0, because it has served its purpose of determining the correct contour. 

Prom the argument of the exponential function in (4.1), we find that the 
saddle-point is located at = -cosq5 and that the corresponding path of 
steepest descent, rS, is given by 

y. = - (Cr + cos q5)  (5r  cos q5 + 1 ) ’ lsin #J I [(&, + cos $12 + sin2 9514’ 

where cr, Ci are respectively the real and imaginary parts of 5. Thus, three cases 
for rs are possible, viz. cosq5 > 0, cos q5 = 0 and cos q5 < 0, as shown in figure 3. 
The contribution to (4.1) from the saddle-point is 

Isin $ 1  (i sin q5 - y cos q5)  (sin 8 - iy cos 6 )  (1 + cos I9)& 
@Jry $) = (1  - y2) (Yo + cos 8 )  (Q + cos 4) (cos q5 + cos 8)  (1  - cos $)9 

Equation (4.2) is not valid, however, for cos 4 N - cos 8 or cos q5 cr: 1.  
From figure 3 it is clear that the contour I’* can be deformed into Fs without 

capturing any poles provided that cos q5 > - cos 6’ and cos q5 > - 1 1 6 .  Then, by 
Cauchy’s theorem, (4.2) is the leading term of the asymptotic solution for $. But 
when cos q5 < - cos I9 or cos q5 < - 1/c0, there are additional contributions from 
the poles at  6 = cos 8 or 5 = <,, respectively. Thus, as kr -+ co, the total wave 
mode l/FT can be written in the form 

@T = @&r, q5)  + [H(cos $75 + cos 8)  + H (  - cos q5 - cos 0) 

x H(sgn q5 sgn O ) ]  exp [ - ik(z cos 8 + y sin B ) ]  

(sin 8 - i y  cos 0)2 
+ ( 7 2  cos2 8 + sin2 8)  

H (  - cos q5 - cos 8) H(sgn q5 sin 8) 

x exp [ - ik(x 00s 0 - y sin S)] 
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where = (1  - y2)-B and H ( z )  is the Heaviside unit step function. The first term 
in (4.3) represents a modulated cylindrical wave propagating out from the 
origin; it is given explicitly by equation (4.2). The incoming free wave is given 
by the second term in (4.3). It exists in the regions I and I1 shown in figure 4. 

Im 5 

FIGURE 3. The 5 plane corresponding to (4.1) whenf < CT < N for the cases (a )  cos$ > 0, 
( b )  cos $ = 0 and (c) cos q5 < 0. The path of steepest descent is denoted by ra. 
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The semi-infinite barrier gives rise to a reflected free wave in the region I1 
(figure 4); this is described by the third term in (4.3). Although the incoming and 
reflected waves are of the same amplitude, they are not in phase at  the barrier 
unless either y = 0 or cos 8 = 0, i.e. unless there is no rotation or the incoming 
wave propagates normal to the barrier. This phase change is a consequence of 

0 
I 

FIGURE 4. Regions around barrier in which terms of asymptotic solution (equation (4.3)) 
become important for the case f < (r < N and where (a )  0 < 8 < +n and ( b )  +T < 8 < n. 

the mixed boundary condition (2.13 b ) .  Behind the barrier, there is a ‘shadow 
zone’ (region 111) in which no free wave exists. The last term in (4.3) describes 
an internal Kelvin wave propagating away from the origin with the barrier to its 
right ( f  > 0); i.e. it appears in region IV  of figure 4. In figure 5, the amplitude of 
the Kelvin wave at the barrier is plotted as a function of y for fixed values of 8. 
As indicated by Crease (1956), this wave can have a greater amplitude than that 
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of the incoming wave. Because the amplitude is independent of k, it is also 
independent of N ,  the Brunt-Vaisak frequency. When y > 0 and 8 > 0,  as 
shown in figure 4, the Kelvin wave appears in the shadow zone behind the 
barrier. However, when one of the parameters y and 8 is negative, the wave 
exists on the same side of the barrier as the incoming wave. 

5. Asymptotic solution for N < Q <f 
For the passband N < cr < f, the waves described by (2.13a,b) are not 

physically equivalent to long surface waves because in the latter case, k2 < 0 
when cr < f and hence free waves of the type (2.11) do not exist. The waves of 
(2.13 a, b)  are now strictly inertial internal waves. 

It was shown in $ 2  that to consider the diffraction problem for the case 
N < cr < f which is physically similar to that for the case f < cr < N ,  we must 
replace k by - k  in (2.11)-(2.13). Now the Sommerfeld radiation condition is 
satisfied by assuming in (3.2) that k has a small negative imaginary part. Thus, 
the h plane for this case is given by the reflexion of figure 2 across the Im h axis, 
except that the poles at h = f A, are moved to h = f i lhol. The diffracted wave $ 
is finally found to be given by (3.12) with k and h,replaced by - k and ik(y2 - l)-*, 
respectively; the contour I? now passes below the singularities at  h = -k and 
- k cos 8 and passes above the branch point a t  h = k. 

To determine the asymptotic form of @ as kr + co, we again apply the method 
of steepest descent. The saddle point is now located at = cos $, and the possible 
paths of steepest descent are given by the reflexion of figure 3 about the Im 6 axis, 
with the pole at  co moved to i I co1. The contribution to @ from the saddle-point is 

Isin$ I (isin$-ycos$)(sin8-iycos8)(1+cos8)* 
@s(y7 = ( 7 2 -  1)  (iCl - cos 8) (iCl - cos $) (cos $ + cos 8)  (1 - cos $)* 

where Cl = ( y 2 -  l)-*. Thus, using Cauchy’s theorem, the total wave mode $T 
has the asymptotic form 

$T = $s + [H( cos $ + cos 8 )  + H (  - cos $ - cos 8) H(sgn $ sgn O)] 

x exp [ i k ( z  cos 8 + y sin 8)] 

H (  - cos $ - cos 8)  H(sgn $ sgn 8)  exp [ik(x cos 8 - y sin B) ]  
(sin 8 - iy cos 8)2 

+ ( 7 2  cos2 8 + sin2 8)  

exp [i tan-l(y2 - 1)-31 H (  - y) 
By&( 1 + cos 8) t  - 

( 7 2 -  l ) a  (y cos 8 - i sin 8 )  
x H (  - cos$- (y2- 1)-3 lsin $ 1 )  exp [ ( y 2 -  I)-* k ( z+iyy ) ] ,  (5.2) 

where 7,hS is given by (5.1). Clearly, the (z, y) plane may be divided as in figure 4, 
except that the Stokes line bordering region I V  at  cos $ = - 1 1 6  is replaced by 
one a t  cos $ = - (y2  - 1)-* I sin $ I. The amplitudes of the waves in regions I to I11 
are exactly the same as for the case f < cr < N ;  however, the phase of each wave 
is now propagating in the opposite direction. The last term in (5.2) represents 
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an inertial-internal wave propagating in the region IV away from and normal to 
the barrier and decaying in the negative x direction. The maximum amplitude 
of this wave is shown as a function of y for fixed values of 8 in figure 5; as for the 
case f < u < N ,  it can also be greater than the amplitude of the incoming wave. 
However, since these waves only appear a t  large distances from the origin (i.e. 
large kr), their actual amplitude is somewhat less than that shown in figure 5. 
On the other hand, since the ratio of the decay length to the wavelength is y, the 
attenuation in the negative x direction is small over one wavelength for very low 
frequencies (i.e. for u < f). 

0 2 4 6 8 10 

Y 
FIUURE 5. Maximum amplitude of internal Kelvin wave as EL function of 

y = f / cr  for various values of 8. 

6. Discussion of internal Kelvin waves 
The existence of internal waves of Kelvin type in region IV of figure 4 is under- 

stood by considering normal mode solutions of (2.9) and (2.10). These equations 
admit solutions of the form 

W = eizs+mv sin (nnzih), (6-1) 

where Z2 = k2/ (  1 - y2) = (nn-/h)2 u2 / (N2  - u2) and m = - yl. The comparable 
normal mode long surface gravity wave problem (see 3 2) has the solution 

@ = eih+mv, (6.2) 

where l 2  = k2/(1 - y2) = u2/gh > 0 and m = - yl. Equation (6.2) represents the 
familiar Kelvin-wave solution in which the wave is trapped against the barrier; 
i.e. the wave travels in the x direction and its amplitude decays exponentially 
away from the barrier. From (6.1), it is seen that the internal wave analogue of 
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this wave occurs when (T < N ,  i.e. when l2  > 0. Applying the radiation condition 
that energy must be propagating away from the origin, we find that for y > 0 
Kelvin waves can exist in the third quadrant only. Since they do not satisfy 
a continuity condition at the plane x = 0, they cannot exist alone. In fact, free 
waves present along the plane x = 0 (y < 0 )  should tend to excite Kelvin waves 
which are ‘natural oscillations’ in this region. If the semi-infinite barrier is 
replaced by an infinite one, then Kelvin waves are exact solutions to the equations 
of motion. The wave-numbers of both types of Kelvin waves are independent 
of y and the ratio of the decay length to the wavelength is y-l in each case. The 
waves can exist for ally( + l),  but they co-exist with free waves only when y < 1, 
i.0. when k2 > 0. We note that whereas long surface gravity Kelvin waves are 
non-dispersive, internal Kelvin waves are dispersive. 

When (T > N ,  equation (6.1) describes a wave for which l 2  < 0. Thus, this 
inertial-internal wave propagates normal to the barrier and its amplitude decays 
along the barrier. As before, the radiation condition implies that the wave can 
exist only in the third quadrant of the (2, y) plane. However, because the ampli- 
tude of this wave increases exponentially in the x direction, it cannot exist alone, 
even if the barrier spans the whole x axis. The dispersion relation for the wave is, 
from (6.1), 

The wave is clearly dispersive, and it is essentially an inertial wave because 
N may be set equal to zero without affecting the mathematics (or the physics) 
of the problem. It can also be shown that the phase and group velocit,ies are of 
opposite signs. This wave in region I V  described in $ 5  might thus be called 
a degenerate internal Kelvin wave or an inertial Kelvin wave. 

We finally note that although there is an energy flux (+Re (pu”))  along the 
barrier associated with a steady-state internal Kelvin wave (f < (T < N ) ,  there is 
no energy flux associated with a (steady-state) inertial Kelvin wave ( N  < (T < f ). 
On the other hand, by allowing the wave amplitude to vary slowly in time (i.e. by 
allowing the frequency (T to have a small positive imaginary part, E ) ,  it is found 
that an inertial Kelvin wave is maintained by an energy flux along the barrier 
that is proportional to E .  

m2 = (nn/h)”f/((T2-P). 

This work was supported in part by the Canadian National Research Council 
through operating grant A 5201. 

R E F E R E N C E S  

CARRIER, G. F., KROOK, M. & PEARSON, C. E. 1966 Functions of u Complex ‘Variable. 

CHAMBERS, LL. G. 1954 Diffraction by a half-plane. Proc. Edin. Math. SOC. 10, 92-9. 
CHAMBERS, LL. G. 1964 Long waves on a rotating earth in the presence of a semi-infinite 

CREASE, J. 1956 Long waves on a rotating earth in the presence of a semi-infinite barrier. 

PHILLIPS, 0. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press. 

New York: McGraw-Hill. 

barrier. Proc. Edin. Math. Xoc. 14, 25-31. 

J. Fluid Mech. 1, 86-96. 


